7.2: Transformations of Initial Value Problems

Theorem 1. (Transforms of Derivatives)
Suppose that the function $f(t)$ is continuous and piecewise smooth for $t \geq 0$ and is of exponential order as $t \rightarrow \infty$. Then $\mathcal{L}\left\{f^{\prime}(t)\right\}$ exists (for $s>c$) and

$$
\mathcal{L}\left\{f^{\prime}(t)\right\}=s \mathcal{L}\{f(t)\}-f(0)=s F(s)-f(0)
$$

Exercise 1. Find a similar formula for $\mathcal{L}\left\{f^{\prime \prime}(t)\right\}$ and then try to generalize to a formula for $\mathcal{L}\left\{f^{(n)}(t)\right\}$.

Example 1. Solve the initial value problem (using Laplace transforms)

$$
x^{\prime \prime}-x^{\prime}-6 x=0 ; \quad x(0)=2, \quad x^{\prime}(0)=-1 .
$$

Example 2. Suppose we wish to study the motion of a mass-and-spring system with external force which gives a differential equation

$$
x^{\prime \prime}+4 x=\sin 3 t ; \quad x(0)=x^{\prime}(0)=0 .
$$

Solve this equation using Laplace transforms.

Example 3. In Chapter 4, we will consider systems of differential equations. Here is a glimpse at the power of Laplace transforms. Solve the system

$$
\begin{aligned}
2 x^{\prime \prime} & =-6 x+2 y \\
y^{\prime \prime} & =2 x-2 y+40 \sin 3 t
\end{aligned}
$$

with initial conditions $x(0)=x^{\prime}(0)=y(0)=y^{\prime}(0)=0$. This is an example of a mass-and-spring system as below.

Example 4. Find $\mathcal{L}\left\{t e^{a t}\right\}$.

Exercise 2. Find $\mathcal{L}\{t \sin k t\}$ using the same method as Example 4.

Theorem 2. (Transforms of Integrals)
If $f(t)$ is a piecewise continuous function for $t \geq 0$ and is of exponential order, then

$$
\mathcal{L}\left\{\int_{0}^{t} f(\tau) d \tau\right\}=\frac{1}{s} \mathcal{L}\{f(t)\}=\frac{F(s)}{s}
$$

for $s>c$. Equivalently,

$$
\mathcal{L}^{-1}\left\{\frac{F(s)}{s}\right\}=\int_{0}^{t} f(\tau) d \tau
$$

Example 5. Find $\mathcal{L}^{-1}\left\{\frac{1}{s^{2}(s-a)}\right\}$.

Exercise 3. Find $\mathcal{L}^{-1}\left\{\frac{3}{s(s+5)}\right.$.

Homework. 1-5, 11-23 (odd) 27-33 (all)

